ESP32 Static/Fixed IP Address

If you’re running a web server or Wi-Fi client with your ESP32 and every time you restart your board the ESP32 has a new IP address, you can follow this tutorial to assign a static/fixed IP address to your ESP32 board.

ESP32-static-IP-address

Static/Fixed IP Address Sketch

To show you how to fix your ESP32 IP address, we’ll use the ESP32 Web Sever code as an example. By the end of our explanation you should be able to fix your IP address regardless of the web server or Wi-Fi project you’re building.

Copy the code below to your Arduino IDE, but don’t upload it yet. You need to make some changes to make it work for you.

Note: if you upload the next sketch to your ESP32 board, it should automatically assign the fixed IP address 192.168.1.184.

/*********
  Rui Santos
  Complete project details at https://randomnerdtutorials.com  
*********/

// Load Wi-Fi library
#include <WiFi.h>

// Replace with your network credentials
const char* ssid     = "REPLACE_WITH_YOUR_SSID";
const char* password = "REPLACE_WITH_YOUR_PASSWORD";

// Set web server port number to 80
WiFiServer server(80);

// Variable to store the HTTP request
String header;

// Auxiliar variables to store the current output state
String output26State = "off";
String output27State = "off";

// Assign output variables to GPIO pins
const int output26 = 26;
const int output27 = 27;

// Set your Static IP address
IPAddress local_IP(192, 168, 1, 184);
// Set your Gateway IP address
IPAddress gateway(192, 168, 1, 1);

IPAddress subnet(255, 255, 0, 0);
IPAddress primaryDNS(8, 8, 8, 8);   //optional
IPAddress secondaryDNS(8, 8, 4, 4); //optional

void setup() {
  Serial.begin(115200);
  // Initialize the output variables as outputs
  pinMode(output26, OUTPUT);
  pinMode(output27, OUTPUT);
  // Set outputs to LOW
  digitalWrite(output26, LOW);
  digitalWrite(output27, LOW);

  // Configures static IP address
  if (!WiFi.config(local_IP, gateway, subnet, primaryDNS, secondaryDNS)) {
    Serial.println("STA Failed to configure");
  }
  
  // Connect to Wi-Fi network with SSID and password
  Serial.print("Connecting to ");
  Serial.println(ssid);
  WiFi.begin(ssid, password);
  while (WiFi.status() != WL_CONNECTED) {
    delay(500);
    Serial.print(".");
  }
  // Print local IP address and start web server
  Serial.println("");
  Serial.println("WiFi connected.");
  Serial.println("IP address: ");
  Serial.println(WiFi.localIP());
  server.begin();
}

void loop(){
  WiFiClient client = server.available();   // Listen for incoming clients

  if (client) {                             // If a new client connects,
    Serial.println("New Client.");          // print a message out in the serial port
    String currentLine = "";                // make a String to hold incoming data from the client
    while (client.connected()) {            // loop while the client's connected
      if (client.available()) {             // if there's bytes to read from the client,
        char c = client.read();             // read a byte, then
        Serial.write(c);                    // print it out the serial monitor
        header += c;
        if (c == '\n') {                    // if the byte is a newline character
          // if the current line is blank, you got two newline characters in a row.
          // that's the end of the client HTTP request, so send a response:
          if (currentLine.length() == 0) {
            // HTTP headers always start with a response code (e.g. HTTP/1.1 200 OK)
            // and a content-type so the client knows what's coming, then a blank line:
            client.println("HTTP/1.1 200 OK");
            client.println("Content-type:text/html");
            client.println("Connection: close");
            client.println();
            
            // turns the GPIOs on and off
            if (header.indexOf("GET /26/on") >= 0) {
              Serial.println("GPIO 26 on");
              output26State = "on";
              digitalWrite(output26, HIGH);
            } else if (header.indexOf("GET /26/off") >= 0) {
              Serial.println("GPIO 26 off");
              output26State = "off";
              digitalWrite(output26, LOW);
            } else if (header.indexOf("GET /27/on") >= 0) {
              Serial.println("GPIO 27 on");
              output27State = "on";
              digitalWrite(output27, HIGH);
            } else if (header.indexOf("GET /27/off") >= 0) {
              Serial.println("GPIO 27 off");
              output27State = "off";
              digitalWrite(output27, LOW);
            }
            
            // Display the HTML web page
            client.println("<!DOCTYPE html><html>");
            client.println("<head><meta name=\"viewport\" content=\"width=device-width, initial-scale=1\">");
            client.println("<link rel=\"icon\" href=\"data:,\">");
            // CSS to style the on/off buttons 
            // Feel free to change the background-color and font-size attributes to fit your preferences
            client.println("<style>html { font-family: Helvetica; display: inline-block; margin: 0px auto; text-align: center;}");
            client.println(".button { background-color: #4CAF50; border: none; color: white; padding: 16px 40px;");
            client.println("text-decoration: none; font-size: 30px; margin: 2px; cursor: pointer;}");
            client.println(".button2 {background-color: #555555;}</style></head>");
            
            // Web Page Heading
            client.println("<body><h1>ESP32 Web Server</h1>");
            
            // Display current state, and ON/OFF buttons for GPIO 26  
            client.println("<p>GPIO 26 - State " + output26State + "</p>");
            // If the output26State is off, it displays the ON button       
            if (output26State=="off") {
              client.println("<p><a href=\"/26/on\"><button class=\"button\">ON</button></a></p>");
            } else {
              client.println("<p><a href=\"/26/off\"><button class=\"button button2\">OFF</button></a></p>");
            } 
               
            // Display current state, and ON/OFF buttons for GPIO 27  
            client.println("<p>GPIO 27 - State " + output27State + "</p>");
            // If the output27State is off, it displays the ON button       
            if (output27State=="off") {
              client.println("<p><a href=\"/27/on\"><button class=\"button\">ON</button></a></p>");
            } else {
              client.println("<p><a href=\"/27/off\"><button class=\"button button2\">OFF</button></a></p>");
            }
            client.println("</body></html>");
            
            // The HTTP response ends with another blank line
            client.println();
            // Break out of the while loop
            break;
          } else { // if you got a newline, then clear currentLine
            currentLine = "";
          }
        } else if (c != '\r') {  // if you got anything else but a carriage return character,
          currentLine += c;      // add it to the end of the currentLine
        }
      }
    }
    // Clear the header variable
    header = "";
    // Close the connection
    client.stop();
    Serial.println("Client disconnected.");
    Serial.println("");
  }
}

View raw code

Setting Your Network Credentials

You need to modify the following lines with your network credentials: SSID and password:

// Replace with your network credentials
const char* ssid = "REPLACE_WITH_YOUR_SSID";
const char* password = "REPLACE_WITH_YOUR_PASSWORD";

Setting your Static IP Address

Then, outside the setup() and loop() functions, you define the following variables with your own static IP address and corresponding gateway IP address.

This is our complete guide to program the ESP32 with Arduino IDE, including projects, tips, and tricks!  SIGN UP NOW »

This is our complete guide to program the ESP32 with Arduino IDE, including projects, tips, and tricks! SIGN UP NOW »

By default, the next code assigns the IP address 192.168.1.184 that works in the gateway 192.168.1.1.

// Set your Static IP address
IPAddress local_IP(192, 168, 1, 184);
// Set your Gateway IP address
IPAddress gateway(192, 168, 1, 1);

IPAddress subnet(255, 255, 0, 0);
IPAddress primaryDNS(8, 8, 8, 8); // optional
IPAddress secondaryDNS(8, 8, 4, 4); // optional

The parameters highlighted in red in the previous snippet are the ones you need to change if you want to assign your desired IP address to the ESP32.

Important: you need to use an available IP address in your local network and the corresponding gateway.

setup()

In the setup() you need to call the WiFi.config() method to assign the configurations to your ESP32.

// Configures static IP address
if (!WiFi.config(local_IP, gateway, subnet, primaryDNS, secondaryDNS)) {
  Serial.println("STA Failed to configure");
}

Note: the primaryDNS and secondaryDNS parameters are optional and you can remove them.

Testing

After uploading the code to your board, open the Arduino IDE Serial Monitor at the baud rate 115200, restart your ESP32 board and the IP address defined earlier should be assigned to your board.

As you can see, it prints the IP address 192.168.1.184.

You can take this example and add it to all your Wi-Fi sketches to assign a fixed IP address to your ESP32.

Assigning IP Address with MAC Address

If you’ve tried to assign a fixed IP address to the ESP32 using the previous example and it doesn’t work, we recommend assigning an IP address directly in your router settings through the ESP32 MAC Address.

Add your network credentials (SSID and password). Then, upload the next code to your ESP32:

Download our Free eBooks and Resources

/*********
  Rui Santos
  Complete project details at https://randomnerdtutorials.com  
*********/

// Load Wi-Fi library
#include <WiFi.h>

// Replace with your network credentials
const char* ssid     = "REPLACE_WITH_YOUR_SSID";
const char* password = "REPLACE_WITH_YOUR_PASSWORD";

// Set web server port number to 80
WiFiServer server(80);

void setup() {
  Serial.begin(115200);
  
  // Connect to Wi-Fi network with SSID and password
  Serial.print("Connecting to ");
  Serial.println(ssid);
  WiFi.begin(ssid, password);
  while (WiFi.status() != WL_CONNECTED) {
    delay(500);
    Serial.print(".");
  }
  
  // Print local IP address and start web server
  Serial.println("");
  Serial.println("WiFi connected.");
  Serial.println("IP address: ");
  Serial.println(WiFi.localIP());
  server.begin();

  // Print ESP MAC Address
  Serial.println("MAC address: ");
  Serial.println(WiFi.macAddress());
}

void loop() {
  // put your main code here, to run repeatedly:
}

View raw code

In the setup(), after connecting to your network, it prints the ESP32 MAC Address in the Serial Monitor:

// Print ESP MAC Address
Serial.println("MAC address: ");
Serial.println(WiFi.macAddress());

In our case, the ESP32 MAC Address is B4:E6:2D:97:EE:F1. Copy the MAC Address, because you’ll need it in just a moment.

Router Settings

If you login into your router admin page, there should be a page/menu where you can assign an IP address to a network device. Each router has different menus and configurations. So, we can’t provide instructions on how do to it for all the routers available.

We recommend Googling “assign IP address to MAC address” followed by your router name. You should find some instructions that show how to assign the IP to a MAC address for your specific router.

In summary, if you go to your router configurations menu, you should be able to assign your desired IP address to your ESP32 MAC address (for example B4:E6:2D:97:EE:F1).

Wrapping Up

After following this tutorial you should be able to assign a fixed/static IP address to your ESP32.

We hope you’ve found this tutorial useful. If you like ESP32, you may also like:

Thanks for reading.


Learn how to program and build projects with the ESP32 and ESP8266 using MicroPython firmware DOWNLOAD »

Learn how to program and build projects with the ESP32 and ESP8266 using MicroPython firmware DOWNLOAD »


Enjoyed this project? Stay updated by subscribing our weekly newsletter!

6 thoughts on “ESP32 Static/Fixed IP Address”

  1. Bonjour. j’utilise avec succès le programme qui permet d’allumer. je voudrais savoir comment faire pour utiliser partout sur la france

  2. Some people might want to access the device from outside their home network. The last time I did something like this I had to first setup the IP address, configure my laptop with that address and run the “whatsmyip” website to show what my external address is. Then I could go back and set the device to that IP and my laptop back to DHCP. Unless you have a better way?

    • You can use one of the free DDNS providers to always access your local network by a DNS name
      like mylocalhome.duckdns.org which would always point to your current IP address…
      Find a list here
      ionos.com/digitalguide/server/tools/free-dynamic-dns-providers-an-overview/

Leave a Comment

Download our Free eBooks and Resources

Get instant access to our FREE eBooks, Resources, and Exclusive Electronics Projects by entering your email address below.